Sulfuric Acid Today Sulfuric Acid Workshop Woodlands, Texas

Rick Davis

Hydrogen Safety – Formation & Risk Mitigation

The Session will focus on issues concerning hydrogen gas incidents that have occurred in the sulfuric industry Worldwide. The session will highlight on topics such as underlying causes, suggestions for mitigation and prevention.

International Hydrogen Safety Workgroup

Mosaic Metso Outotec Davis & Associates Consulting Chemetics Elessent MECS Technologies Eco Services Saconix

Program

Rick Davis Jack Harris Mack Jones Walter Weiss Hannes Storch Panel Discussion Davis & Associates Consulting VIP International Mosaic Elessent MECS Technologies Metso Outotec

Sulfuric Acid Process

The Process Secret No water No sulfuric acid Carbon Steel can be used Ductile Iron can be used

Underlying Causes

Acid concentrations out of range Steam systems leaks Cooling water leaks Maintenance / operational procedures

Suggestions For Mitigation

Quick acknowledgement of Acid concentrations out of range Venting the potential accumulation of Hydrogen Keep blower running Maintenance / operational procedures

Instrumentation Ideas

Automatic Double Block & Bleed to ALL controlled points Water into the Strong Acid System

Measurement of dilution flow versus acid production

Operational Ideas

Maintain acid concentration monitoring during maintenance outages

Develop procedures for weak acid incidents

Weak Acid

Normal Acid Range93% - 99%Normal Temperature Range110 - 235 F

CORROSION OF 304 STAINLESS IN SULFURIC ACID

275 mils/d (7 mm/d) or 10 mils/hr (0.25 mm/hr)

Metal Loss

- Density of $304L SS = 8.3 \text{ g/cm}^3 (0.3 \text{ lb/In}^3)$
- Basis: 100 M² (1,075 ft²) surface area (1,000,000 cm² or 154,800 in²)

Metal loss:

 $0.25 \frac{mm}{hour} x \frac{1 \ cm}{10 \ mm} x \ 1,000,000 \ cm2 \ x \ 8.3 \frac{g}{cm3} x \ \frac{kg}{1,000 \ g} = \frac{208 \frac{kg}{hr} Fe}{hr} Fe} per \ 100 \ M2 \ / \ Hr}$

Hydrogen Generation:

 $Fe + H2SO4 \rightarrow FeSO4 + H2$

$$208 \frac{kg Fe}{hr} \times \frac{kg - mole}{56 kg} \times 1 \frac{H2}{Fe} \times 22.4 \frac{NM3}{kg - mole} = \frac{83 \frac{NM3}{hr * 100 M2}}{83 \frac{NM3}{hr * 100 M2}}$$

3,000 MTPD Plant Mist Eliminator Housing

In Hanging Configuration

7.5 M diameter x 5 M high

Volume 220 M³

Worse Case Time to Reach 4 Vol% LEL (600 M² acid cooler)

$$\frac{220 M3 \times 0.04 Vol\% x 60 \frac{Min}{Hr}}{83 \frac{NM3}{hr * 100 M2} x 6 100 M2} =$$

38 minutes !!

The potential for H2 is always present

Conditions that accelerate H2 formation

- High corrosion rates
 - (low acid conc and high temps caused by dilution)
- Weak acid in contact with large amounts of metal
 - Acid coolers, economizers, etc

Ever present factors contribute to reaching the explosive limit

- Time
 - Normal corrosion generates H2 and become dangerous with time
- Stagnant gas and a place for H2 to accumulate
 - Remember that H2 can flow upstream to high spots, such as converters

April 2022

Suggestions For Mitigation

Review SOP Review instrumentation and interlocks Review operation staff knowledge

Hydrogen Incident Resources

Sulfuric Acid Today

www.h2so4today.com/hydrogen-safety

