

Hydrogen Safety For Sulfuric Acid Plants

SYMPTOMS OF ACID COOLER TUBE LEAK

DROP IN pH OF COOLING WATER FROM THE COOLER

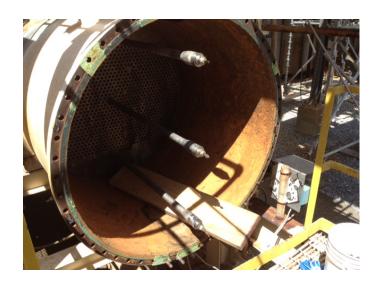
- 0.05 wt% H2SO4 (~0.01N) has a pH of 2 (Δ~5,800 micro-mhos/cm²)
- 0.5 wt% (~0.1N) H2SO4 has a pH of 1 (Δ ~24,000 micro-mhos/cm²).

IF LEAK IS SUBSTANTIAL OUTLET WATER TEMPERATURE WILL INCREASE

Making 5% ΔH2SO4 raises the CTW temperature by 15 °F

Hydrogen is also Present During Repairs

Brief Description:


Two employees were in the process of completing a weld repair on a shell-and-tube heat exchanger.

Tack welds were completed on the plug. When the employee initiated final welding on the plug, a flash fire occurred.

Due to close proximity to the work, both employees received minor burns from the flash.

Initial Findings:

- General work, confined space and line break permits were created and followed for the task
- Flammable vapor tests were conducted immediately prior to welding start with no issues detected
- Employee was wearing Nomex

Opportunities to Leverage:

- Ensure continuous monitoring during hot work
- PPE prevented more serious injury to employee
- Fuel source is likely hydrogen gas

Hydrogen Safety Committee Observations and Conclusions

Members:

Solvay

Mosaic

Outotec

Chemetics

MFCS

Rick Davis – Consultant Lenny Friedman - Consultant

 $Fe+H2SO4 \rightarrow FeSO4+H2$

 $H2+1/2 O2 \Delta Q/> H2O$

General Observations

- A majority of water leak events occur without incident
- H₂ incidents predominately occur when
 - Substantial amounts of acid are diluted
 - Large surface area equipment is involved
 - The blower is stopped

Weak Acid Excursion Causes

- Equipment failure
 - Nearing end of life expectancy
 - Malfunction
 - Defect
- Upstream sources
 - Significant waste heat boiler or superheater leak
- Operating/maintenance procedures
 - Incomplete or incorrect decontamination or commissioning
 - Lack of procedures or drains to remove condensed acid
- Inadvertent water dilution
 - Leaking dilution water control valve
 - Concentration control analyzer failure

Contributing Factors

- Recognition of the potential severity
 - Leaks rapidly escalate
 - Risk of collateral damage increases
 - Potential for damage outside of unit increases
 - acidification of cooling water circuit
- Response to a deteriorating situation
 - Sufficiency or ability to isolate/drain water
 - Ability to rapidly remove weak acid from the system
- Awareness of dangerous conditions
 - Corrosion of large surface area equipment results in high H₂ generation rates
 - Minimal oxygen is required (> 4 vol%)
 - · Stagnant high spots allow mixture to reach the explosive limit

Conclusions

- When weak acid is present, H₂ will be generated
- H₂ was a wide explosive limit
- Ignition energy for H₂ is very low
 - (It will happen!)

High Level Guidelines

Hydrogen Safety Committee High Level Guidelines

- Minimize H2 formation by
 - Separating weak acid from metal
 - Guidelines will be plant specific
- Minimize water ingress
 - Isolate the cooling water
 - Beware of H₂ formation in cooling systems
 - Provide economizer BFW bypasses

Hydrogen Safety Committee High Level Guidelines

- Address H₂ accumulation
 - Blower purge
 - High point vents
 - N₂ purge
- Operational awareness / formal procedures
 - Emergency plans
 - Training
- Infrastructure
 - Expand Hazop scope to shared utilities
 - Cooling water systems

Moving Forward

Efforts Should Be Focused On:

- Early detection of leaks
 - pH or conductivity in acid coolers
 - Acid accumulation in economizers
- Mitigation
 - Shutdown procedures
 - Equipment evacuation
- Prevention
 - Avoiding the H2 explosive limit

What Can Be Done To Prevent H₂ Incidents?

Technology suppliers

- Incorporate findings in HAZOP
- Adjust designs accordingly

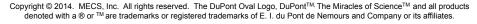
What Can Be Done To Prevent H₂ Incidents?

Operating companies

- Be on the lookout for indicators
- Keep training current
- Have written emergency procedures
- Regularly test pH/conductivity meters
- Transfer experience (Legacy planning and site to site)
- Test your operator's skills (Drills)

A Final Thought

- Communicate information like what is being presented here to your operators!!
- Plan ahead. Prepare emergency procedures so that hasty decisions don't have to be made in a time of crisis.
- Adjust procedures based on experience



Sharing experiences might make you feel like you are standing naked in the sunshine...

But, feeling naked motivates one to become "Stronger"!!

Thank you!

The miracles of science™

Members:

Solvay

Mosaic

Outotec

Chemetics

MECS

Rick Davis – Consultant Lenny Friedman - Consultant

DuPont Sustainable Solutions CLEAN TECHNOLOGIES

